Gust Alleviation of a Large Aircraft with a Passive Twist Wingtip

نویسندگان

  • Shijun Guo
  • Ying Liu
  • Konstantinos Kontis
چکیده

This paper presents an investigation into the gust response and wing structure load alleviation of a 200-seater aircraft by employing a passive twist wingtip (PTWT). The research was divided into three stages. The first stage was the design and analysis of the baseline aircraft, including aerodynamic analysis, structural design using the finite element (FE) method and flutter analysis to meet the design requirements. Dynamic response analysis of the aircraft to discrete (one-cosin) gust was also performed in a range of gust radiances specified in the airworthiness standards. In the second stage, a PTWT of a length of 1.13 m was designed with the key parameters determined based on design constraints and, in particular, the aeroelastic stability and gust response. Subsequent gust response analysis was performed to evaluate the effectiveness of the PTWT for gust alleviation. The results show that the PTWT produced a significant reduction of gust-induced wingtip deflection by 21% and the bending moment at the wing root by 14% in the most critical flight case. In the third stage, effort was made to study the interaction and influence of the PTWT on the symmetric and unsymmetrical manoeuvring of the aircraft when ailerons were in operation. The results show the that PTWT influence with a reduction of the aircraft normal velocity and heave motion by 1.7% and 3%, respectively, is negligible. However, the PTWT influence on the aircraft roll moment with a 20.5% reduction is significant. A locking system is therefore required in such a manoeuvring condition. The investigation has shown that the PTWT is an effective means for gust alleviation and, therefore, has potential for large aircraft application. OPEN ACCESS Aerospace 2015, 3 136

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimisation of the Composite Sensorcraft Structure for Gust Alleviation

Despite the benefits of composite structures, it is only recently that the main load bearing structures in large aircraft such as the Boeing 787 and Airbus A350 have started to be manufactured using carbon fibre composites. Even then, the unique directionality properties of composite laminates have yet to be exploited to improve the aircraft performance. In this study an aluminium and composite...

متن کامل

Communicated by the Principal Director of Scientific Research (air), Ministry of Supply

Imomlbressibte Flow Summary.-The report presents the theoretical calculations of gust alleviation factor made for rigid aircraft and with one degree of freedom only (i.e., vertical motion). It is shown that for average gust lengths and for orthodox (tailed) aircraft the influence of thesecond degree of freedom (i.e., pitching) on the value of the gust alleviation factor is negligibly small, pro...

متن کامل

Gust Load Alleviation Based on Model Predictive Control

Weight reduction is a typical design goal for modern aircraft. If gust encounters (as required by Certification Specification 25) are sizing conditions of parts of the airframe, this can be achieved (for example) by an active gust load alleviation system that reduces the gust load level down to the level of the next design condition, which might be the design loads from maneuver conditions. In ...

متن کامل

Gust Load Alleviation Control for Very Flexible Aircraft

This paper focuses on the development of a wind gust load alleviation control system for implementation in very flexible aircraft. The gust load alleviation system is designed using Linear Quadratic Gaussian (LQG) control techniques, and it is based on a nonlinear model of the coupled rigid-body and elastic modes of a very flexible aircraft. The nonlinear model contains the dynamics of the airc...

متن کامل

The paper reviews recent achievements in the application of smart-materials actuation to counteract aeroelastic and vibration effects in helicopters and fixed wing aircraft. A brief review of the induced-strain actuation principles

The paper reviews recent achievements in the application of smart-materials actuation to counteract aeroelastic and vibration effects in helicopters and fixed wing aircraft. A brief review of the induced-strain actuation principles and capabilities is done first. Attention is then focused on the smart rotor blade applications. Induced twist, active blade tip, and active blade flap are presented...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015